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LETTER TO THE EDITOR 

Conformational space renormalisation group theory of 
‘tricritical’ (theta point) exponents for a polymer chain 

A L Kholodenko and Karl F Freed 
The James Franck Institute, The University of Chicago, Illinois 60637, USA 

Received 6 January 1984 

Abstract. The marked difference between the n+O limit of O ( n )  @4-46 field theory 
tricritical exponents and accepted values for a polymer in d = 2 are  shown to persist when 
renormalisation is performed away from the tricritical point. The difference is removed 
by introducing a physically dictated renormalisation prescription for the field theoretic 
formulation of the polymer problem or the equivalent chain conformational space method. 

The n + 0 limit of O ( n )  44 field theory has been used to describe a self-avoiding 
random walk, providing a model for long polymer chain above the theta temperature. 
This field theoretic method, as well as the formally equivalent conformation space 
path integral method, (Freed and Kholodenko 1983, Kholodenko and Freed 1983), 
provides an excellent description of the ‘critical exponents’, correlation functions, and 
cross-over behaviour of a wide variety of polymer systems. The success of the 44 field 
theory has led to the belief that field theoretic methods could also be applied to the 
description of the theta point (‘tricritical’) region, where the quartic coupling constant 
is small, by incorporating a +6 term to represent three-body interactions. Such a field 
theory for non-zero n is associated with the description of tricritical phenomena. 

Renormalisation group calculations for the tricritical point have been given by 
Stephen (1975). He provides exponents like 

for E = 3 - d and d the dimensionality, which have recently been reproduced using 
field theoretic techniques by Duplantier (1983). By analogy with the 44 case, it has 
been presumed that the n + 0 limit of (1) is also relevant to polymers. The only 
evidence available for polymers in the theta region comes from Monte Carlo calcula- 
tions, (Baumgartner 1982, Kremer et a1 1981) which have not yet established the 
d = 2 theta point exponents, from crude real space renormalisation group calculations 
(Marquesee and Deutch 1981) which suggest that the theta point exponents are closer 
to the d = 2  mean field predictions obtained by Flory-type arguments, and from 
inter-dimensional scaling arguments (Oono 1976a, b) which reproduce the Flory 
exponents and are quite accurate in other areas of critical phenomena (Imry et a1 
1973, Freed and Kosmas 1978). (The Flory exponent vF, given below, is substantially 
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different from vs for d = 2.) These d = 2 theta point exponents are central quantities 
in the consideration of branched polymer systems where Daoud et al (1983) use the 
mean field exponents rather than (1). Hence, the strong disagreement between the 
results of tricritical renormalisation group calculations (Stephen 1975) and likely 
polymer values, which more closely resemble mean field predictions, is very trouble- 
some. This implies that (a) either the field theory formalism becomes inapplicable to 
polymers in this regime or (b) some essential element of the polymer physics is omitted 
in the existing field theoretic formulations. 

The use of the O( n )  model for polymers is based on a convenient set of mathematical 
analogies, and care must be exercised when extending the analogies beyond their proven 
domain of validity. It can be shown following de Gennes (1979) that the description 
of a polymer chain with two- and three-body interactions can exactly be mapped into 
the n + 0 limit of O( n )  44-46 type field theory. The field theoretic description (Brezin 
et a1 1976) of the tricritical point is based on renormalisation at the tricritical point 
T,; then the method of insertions (Amit 1978) permits calculations away from T,. 
The quantity s = ( T  - Tc)/ T, in the field theory, w-ith T the temperature, corresponds 
to a Laplace variable conjugate to the polymer chain length N. Hence, a polymer 
theory with s fixed corresponds to a system of polymers with an exponential distribution 
of chain lengths N. As we approach the tricritical point s + O  where the effective 
quartic interaction vanishes, the mean value of this polymer length distribution tends 
toward the physically unattainable infinite limit. Consequently, in polymer systems the 
tricritical point is a physically inaccessible limit, whereas in other critical phenomena 
it is quite approachable from above or below. 

When calculating molecular weight dependent properties of polymer systems, it is 
necessary to perform an inverse Laplace transform to convert from s-dependent to 
N-dependent quantities. The theta point is described theoretically (and empirically) 
as the point at which the second virial coefficient for the polymers, that is related to 
the inverse Laplace transformed four-vertex part, vanishes. We show below that this 
different choice of the renormalisation prescription for the vertex part, as dictated by 
the physics of polymers, leads to exponents which are close to Flory’s mean field 
values but are distinct from (1) for n = 0. This then resolves the previous discrepancy 
between approximate polymer and renormalisation group exponents. We also show 
(Kholodenko and Freed 1984) that the massive O ( n )  44-46 field theory can be 
renormalised, corresponding to renormalisation for T f T,. This would still lead to 
identical tricritical exponents to those given by Stephen (1975) for the tricritical region 
as well as to those known in O ( n )  44 theory (Amit 1978). 

Following Flnry (Fisher 1968 and de Gennes 1979) the mean field free energy 
functional for the single chain with radius R and length N is (Isaacson and Lubensky 
1983) 

F / k T  = R2N-’  +gN2R-d + w N ~ R - ’ ~ ,  (2) 
(with numerical constants and factors of the lattice constant omitted.) The R2N-’  
term is the entropic contribution while those in g and w, respectively, are due to two- 
and three-body interactions. For good solvents, we may set w = 0, and the minimisation 
dF/dR = 0 yields R 2 a  N2” with the Flory result 2vF = 6/ (d+2) .  Near the theta point 
g = 0, so the minimum free energy yields 2 vF = 4/ (d  + 1) which differs considerably 
from (1) for d = 2 and n = 0. 

This exponent (and others) can be reproduced more rigorously by applying renor- 
malisation group methods to the conformational space functional integral, (Edwards 
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1966, Freed and Kholodenko 1983, Kholodenko and Freed 1983, 1984) 

with ( R z )  = ddRR2G(R, N ) / j  ddRG(R, N ) ,  or to the field theoretic formulation from 
n 

GB(R, S) = lim C n-’X-’  9[JI]+i(R)+i(O) 
n+O i = l  

with X the conventional normalisation factor to remove disconnected diagrams (Amit 
1978). When w =0, the renormalisation scheme for (3) is based on the relation 
(Kholodenko and Freed 1983) G(R,  N, uL) = ZGB(R, No, go), where go= uOL-‘”, 
E = 4 - d,  N = &No, uo = Zuu, L is some length scale and the renormalisation constants 
are determined order-by-order. Fourier-Laplace inversion of G converts this 
(Kholodenko and Freed 1983) to the standard field theory form 

G(k,  S, u , L ) = [ i ~ k 2 + Z , + i ~ ( k , Z 2 s ) ] - ‘  ( 5 )  

with 2 = ZZ;’ and k is the Fourier variable conjugate to R. The computations are 
then the same as for massive, one-component (b4 field theory, corresponding to chains 
of finite length. The only difference between the polymer problem and one-component 
(b4 theory lies in the combinatorial weights for individual diagrams (Kholodenko and 
Freed 1983). Use of ( 5 )  eliminates the need for insertions. It can be shown 
(Kholodenko and Freed 1984) that there is a direct correspondence between our 
method of renormalisation and that of field theory with insertions (Brezin et a1 1976, 
Amit 1978) through the correspondence between our renormalisation constants 
( Z , z , Z , )  and the respective ones (zm2,Z+,,Zu) of Amit’s book (1978). Hence, 
renormalisation based on ( 5 )  yields the same exponents in the long chain N + o;, limit 
as the n + 0 limit of (b4 field theory. 

The extension of the renormalisation scheme to the theta (‘tricritical’) region is 
based on (3) and the relationship 

G (  k, N ;  g, w, L )  = eaN(2.rri)-’ ds  exp(sN)[f ik2 + Z,  + Z, + &( k, Z2)(s + a) ) ] - ’ ,  

(6) 
with C the contour for inverse Laplace transforms, and the additive renormalisation 
enters through a and Z,. Paralleling the procedure for ( 5 )  it can be shown (Kholodenko 
and Freed 1983) that renormalisation of (4) and the portion of the right-hand side of 
(6) in brackets for fixed s are identical. We now proceed to show how tricritical 
renormalisation can be made for s # 0. The conventional renormalisation prescription 
implies the vanishing of the four-vertex part at the tricritical point (or the second virial 
coefficient at the theta point) for a particular quartic coupling constant g:. This 

I,: 
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condition is represented diagrammatically in figure 1 to lowest order. Within the 
dimensional regularisation method, the fixed s solution is obtained in lowest order as 
goo = 2 wO(2s)’/’. In general, the solution has the form g: = (2s)”’ Z;=o a,  W’E-’ 

as follows from dimensional arguments. Hence, the vanishing of the four vertex part 
for s # 0 implies 

(7) 

where the solution for g: is substituted into the four-vertex part to obtain the coefficients 
a,, which are dictated by dimensional analysis to be pure numbers. Consequently, our 
renormalisation scheme may be performed for any non-zero fixed s and leads to the 
same exponents as Stephen’s, i.e., gives the same results as from (4) with the use of 
insertions (Duplantier 1983). 

P4)(g:, W, S) = (25)1/2F4)( W )  = 0 ,  

Figure 1. First-order diagrams to determine the tricritical g: in s-space or the theta point 
gi in N-space. Diagrams follow standard rules in both cases (Amit 1978, Kholodenko 
and Freed 1983, 1984). External legs are included in the equation for the polymer second 
virial coefficient, but not in the equation for the tricritical case. 

In polymers, s is just a Laplace variable which cannot, in principle, be fixed. Inverse 
Laplace transformations of the equation in figure 1 yields the fixed N, theta point 
coupling constant goo= 4w,,(2/7~N)~/~ in lowest order. The simple property of inverse 
Laplace transforms L-’[f( s ) h (  s)] # L-’[ f (  s)]L-‘[h( s)] for f and h arbitrary functions 
implies that the solutions I‘(4)(g:, w, s) = 0 and r(4)(g:, w, N )  = 0 are numerically differ- 
ent (see comment in figure caption) and yield different cancellations for the inverse 
two-point propagator expansion. Therefore, finite N renormalisation produces numeri- 
cally different results than renormalisation with s fixed. We have not found any simple 
relation between the fixed s and N renormalisation constants and exponents. In the 
N + 03 limit the fixed N formalism yields 2v  = 1.102 in d = 2 to be compared with the 
Flory value of 2vF=1.333 or ( 1 )  for n+O of 2vs=1.011. 

Away from the theta point g = goo+ Sg # 0, and a full calculation yields the polymer 
cross-over exponent @ = $ + $ E  to be compared with Stephen’s (1975) tricritical 
QS = $ + A  E.  The value of @ enables us to establish the size of the tricritical domain 
as well as to obtain (R’) near the theta point for 22w In N I L  >> 1 as 

(R’) =N1 exp(2.245w){l-0.014[ln(N/L)]-’ +0.66(2N/.rr)”’ e x p ( l . 1 2 ~ )  

x[22w I ~ ( N / L ) ] ~ ” ’ s ~ + .  . .} .  (8) 
Results for temperatures below the theta point where the chain undergoes collapse, 
the coil-globule transition, will be presented elsewhere. 

The inadequacy of fixed s renormalisation for polymers emerges readily when 
calculating any physical quantities because the finite portions left after regularisation 
contain terms in ln(27r/sL) which are removed by the choice of s for which 27~/sL = 1. 
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However, if s is a Laplace variable, any choice of single L incorrectly leaves logarithmic 
terms after transformation. 

The new set of theta point exponents are simply understood as follows. Renormali- 
sation prescriptions must be introduced based on physical considerations of observables. 
The fixed s four-vertex part is not a measurable for pblymers, while the second virial 
coefficient is the quantity generally chosen to establish the theta point empirically. 
This different renormalisation prescription naturally produces different exponents for 
fixed N. Averaging over arbitrary distributions in N leaves the same exponents, of 
course. It is clear, however, that these exponents are relevant only for sufficiently 
long polymer chains. 

We are grateful to Tom Witten for recalling for us the conflict between vs and polymer 
values for d = 2 and to B Duplantier for sending us his work prior to publication. This 
research is supported, in part, by NSF grant DMR 78-26630. 
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